
 C LANGUAGE

ADDRESS:13,Gulab Chand kiBagichi,BehindJavarEstate,Gandhi Road.ThatipurChauraha,Gwalior [M.P]

+919301123085,+919752576100 0751-4062091

1

The ͞C͟ Programming Language course syllabus - associate

level

(CLA – C Programming Language Certified Associate)

Course description
The course fully covers the basics of programming in the ͞C͟
programming language and demonstrates fundamental

programming techniques, customs and vocabulary including the

most common library functions and the usage of the preprocessor.

Learning objectives
To familiarize the trainee with basic concepts of computer

programming and developer tools.

To present the syntax and semantics of the ͞C͟ language as well as

data types offered by the language

To allow the trainee to write their own programs using standard

language infrastructure regardless of the hardware or software

platform

Course outline
Introduction to compiling and software development

Basic scalar data types and their operators

Flow control

Complex data types: arrays, structures and pointers

Structuring the code: functions and modules

Preprocessing source code

Chapters:
Absolute basics

languages: natural and artificial

machine languages

high-level programming languages

obtaining the machine code: compilation process

recommended readings

your first program

variable – why?

integer values in real life and in ͞C͟, integer literals

Data types

floating point values in real life and in ͞C͟, float literals

arithmetic operators

priority and binding

post- and pre -incrementation and -decrementation

operators of type op=

char type and ASCII code, char literals

equivalence of int and char data

comparison operators

conditional execution and if keyword

printf() and scanf() functions: absolute basics

Flow control
conditional execution continued: the ͞else͟ branch

more integer and float types

conversions – why?

typecast and its operators

loops – while, do and for

controlling the loop execution – break and continue

logical and bitwise operators

Arrays
switch: different faces of ͚if͛
arrays (vectors) – why do you need them?

sorting in real life and in a computer memory

initiators: a simple way to set an array

pointers: another kind of data in ͞C͟
an address, a reference, a dereference and the size of operator

simple pointer and pointer to nothing (NULL)

& operator

pointers arithmetic

pointers vs. arrays: different forms of the same phenomenon

using strings: basics

basic functions dedicated to string manipulation

Memory management and structures
the meaning of array indexing

the usage of pointers: perils and disadvantages

void type

arrays of arrays and multidimensional arrays

memory allocation and deal location: malloc() and free() functions

arrays of pointers vs. multidimensional arrays

structures – why?

declaring, using and initializing structures

pointers to structures and arrays of structures

basics of recursive data collections

Functions
functions – why?

how to declare, define and invoke a function

variables' scope, local variables and function parameters

pointers, arrays and structures as function parameters

function result and return statement

void as a parameter, pointer and result

parameterizing the main function

external function and the extern declarator

header files and their role

Files and streams

files vs. streams: where does the difference lie?

header files needed for stream operations

FILE structure

opening and closing a stream, open modes, errno variable

reading and writing to/from a stream

predefined streams: stdin, stdout and stderr

stream manipulation: fgetc(), fputc(), fgets() and fputs() functions

raw input/output: fread() and fwrite() functions

Preprocessor and complex declarations
preprocessor – why?

#include: how to make use of a header file

#define: simple and parameterized macros

#undef directive

predefined preprocessor symbols

macrooperators: # and ##

conditional compilation: #if and #ifdef directives

avoiding multiple compilations of the same header files

scopes of declarations, storage classes

user -defined types – why?

pointers to functions

analyzing and creating complex declarations

C Graphics, Sound and Animation

	The “C” Programming Language course syllabus - associate level
	(CLA – C Programming Language Certified Associate)

